Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 347, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514821

RESUMO

Anticipating and mitigating the impacts of climate change on biodiversity requires a comprehensive understanding on key habitats utilized by species. Yet, such information for high mobile marine megafauna species remains limited. Here, we compile a global database comprising published satellite tracking data (n = 1035 individuals) to spatially delineate foraging grounds for seven sea turtle species and assess their thermal stability. We identified 133 foraging areas distributed around the globe, of which only 2% of the total surface is enclosed within an existing protected area. One-third of the total coverage of foraging hotspots is situated in high seas, where conservation focus is often neglected. Our analyses revealed that more than two-thirds of these vital marine habitats will experience new sea surface temperature (SST) conditions by 2100, exposing sea turtles to potential thermal risks. Our findings underline the importance of global ocean conservation efforts, which can meet climate challenges even in remote environments.


Assuntos
Tartarugas , Humanos , Animais , Ecossistema , Oceanos e Mares , Temperatura , Biodiversidade
2.
J Environ Manage ; 339: 117805, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043912

RESUMO

As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.


Assuntos
Ecossistema , Tartarugas , Animais , Conservação dos Recursos Naturais/métodos , Mudança Climática , Biodiversidade
3.
Glob Chang Biol ; 29(7): 1809-1821, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583369

RESUMO

Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%-31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.


Assuntos
Caniformia , Espécies em Perigo de Extinção , Animais , Mudança Climática , Biodiversidade , Mar Mediterrâneo , Conservação dos Recursos Naturais , Ecossistema
4.
Glob Chang Biol ; 28(15): 4577-4588, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583810

RESUMO

Given the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three-dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth-specific prioritization analysis to inform the design of protected areas, further including metrics of climate-driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three-dimensional, climate-smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two-dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger-scale impacts associated with climate change.


Assuntos
Ecossistema , Refúgio de Vida Selvagem , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Mar Mediterrâneo
5.
Glob Chang Biol ; 28(7): 2413-2424, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981617

RESUMO

Climate plays a major role in shaping biodiversity patterns over time and space, with ongoing changes leading to the reorganization of ecosystems, which challenges conservation initiatives. Identifying areas that could serve as possible climate change refugia for future biodiversity is, thus, critical for both conservation and management. Here, we identify potential future climatic refugia within the Euro-Mediterranean biome, which is a global biodiversity hotspot, while accounting for multiple emission climate change projections over the next 50 years. We developed two metrics of climatic variability: temporal stability and spatial heterogeneity. We then used a systematic conservation planning approach to identify climate-based priority areas. While we used a climate-based, species-neutral methodology, we deliberately implemented low climatic velocity thresholds, so that the identified climatic refugia would even be compatible with the needs of species with low dispersal capacity, such as plants. Our projections showed that future climatic refugia would be more frequently observed in mid-altitudes, for gradients with steep elevations, and mainly in the eastern part of the Euro-Mediterranean biome, with possible conflicts with existing land uses and future conservation implications. Climatic, land use, and topography results indicated that only a limited number of refugia would be hosted by high elevation habitats (>1500 m), raising possible concerns about the biodiversity of Mediterranean mountain regions. Our analyses show that the current network of protected areas captures future climatic refugia disproportionally, despite their importance for safeguarding present and future biodiversity in the Mediterranean. Key climatic refugia could limit the impacts of future climate change on biodiversity in mid-altitude and mountainous regions, and should be included in management guidelines for a climate-ready conservation design in the Mediterranean biome.


Assuntos
Ecossistema , Refúgio de Vida Selvagem , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Europa (Continente)
7.
Sci Data ; 8(1): 89, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758194

RESUMO

Trees play a key role in the structure and function of many ecosystems worldwide. In the Mediterranean Basin, forests cover approximately 22% of the total land area hosting a large number of endemics (46 species). Despite its particularities and vulnerability, the biodiversity of Mediterranean trees is not well known at the taxonomic, spatial, functional, and genetic levels required for conservation applications. The WOODIV database fills this gap by providing reliable occurrences, four functional traits (plant height, seed mass, wood density, and specific leaf area), and sequences from three DNA-regions (rbcL, matK, and trnH-psbA), together with modelled occurrences and a phylogeny for all 210 Euro-Mediterranean tree species. We compiled, homogenized, and verified occurrence data from sparse datasets and collated them on an INSPIRE-compliant 10 × 10 km grid. We also gathered functional trait and genetic data, filling existing gaps where possible. The WOODIV database can benefit macroecological studies in the fields of conservation, biogeography, and community ecology.


Assuntos
Bases de Dados Factuais , Florestas , Árvores , Ecossistema , Região do Mediterrâneo , Filogenia
8.
J Environ Manage ; 201: 425-434, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28704732

RESUMO

Coastal urban expansion will continue to drive further biodiversity losses, if conservation targets for coastal ecosystems are not defined and met. Prioritizing areas for future protected area networks is thus an urgent task in such urbanization-threatened ecosystems. Our aim is to quantify past and future losses of coastal vegetation priority areas due to urbanization and assess the effectiveness of the existing protected area network for conservation. We conduct a prioritization analysis, based on 82 coastal plants, including common and IUCN red list species, in a highly-urbanized but biotically diverse region, in South-Eastern France. We evaluate the role of protected areas, by taking into account both strict and multi-use areas. We assess the impact of past and future urbanization on high priority areas, by combining prioritization analyses and urbanization models. We show that half of the highly diverse areas have already been lost due to urbanization. Remaining top priority areas are also among the most exposed to future urban expansion. The effectiveness of the existing protected area (PA) network is only partial. While strict PAs coincide well with top priority areas, they only represent less than one third of priority areas. The effectiveness of multi-use PAs, such as the Natura 2000 network, also remains limited. Our approach highlights the impact of urbanization on plant conservation targets. By modelling urbanization, we manage to identify those areas where protection could be more efficient to limit further losses. We suggest to use our approach in the future to expand the PA network in order to achieve the 2020 Aichi biodiversity targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , França , Urbanização
9.
Sci Total Environ ; 590-591: 566-578, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284647

RESUMO

Interdisciplinarity and transdisciplinarity are the cornerstone for the future management of coastal ecosystems with many vulnerability and hazard indexes developed for this purpose, especially in the engineering literature, but with limited studies that considered ecological implications within a risk assessment. Similarly, the concept of prioritization of sites has been widely examined in biodiversity conservation studies, but only recently as an instrument for territory management. Considering coastal plant diversity at the species and community levels, and their vulnerability to three main potential hazards threatening coastal areas (oil spills, Hazardous and Noxious Substances pollution, fragmentation of natural habitats), the objective of this paper is to define an easy-to-use approach to locate and prioritize the areas more susceptible to those stressors, in order to have a practical instrument for risk management in the ordinary and extra-ordinary management of the coastline. The procedure has been applied at pilot areas in four Mediterranean countries (Italy, France, Lebanon and Tunisia). This approach can provide policy planners, decision makers and local communities an easy-to-use instrument able to facilitate the implementation of the ICZM (Integrated Coastal Zone Management) process in their territory.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , França , Itália , Líbano , Gestão de Riscos , Tunísia
10.
PLoS One ; 9(3): e92674, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664115

RESUMO

Small and peripheral populations are typically vulnerable to local extinction processes but important for the metapopulation dynamics of species. The Slender-billed gull (Chroicocephalus genei) is a long-lived species breeding in unstable ephemeral coastal habitats. Their Western Mediterranean populations are relatively small and represent the edge of their global geographical distribution. At a local scale, using long-term data (14 years) on annual breeding success and capture-resights of marked individuals, we estimated and compared the vital rates and evaluated the connectivity of two Spanish populations (Ebro Delta and Doñana) varying in their local environmental conditions. At a metapopulation scale, we analyzed 22 years of data on breeding numbers to predict their future prospects by means of population demographic models. Local survival and breeding success of gulls from the Ebro Delta was lower than those from Doñana, which is likely the result of higher permanent emigration and/or winter mortality in the former. Gulls from the Ebro Delta wintered mostly in Mediterranean areas whereas those from Doñana did so in Atlantic coasts, where food availability is higher. Whereas adult local survival was constant, juvenile local survival showed temporal parallel variations between colonies, probably related to natal dispersal to other breeding colonies. Our results suggested that dispersal was higher at the Ebro Delta and gulls emigrating from their natal colonies settled preferentially in close patches. We found large fluctuations in breeding numbers among local populations probably related to the fact that the Slender-billed gull is a species adapted to unstable and unpredictable habitats with high abilities to disperse between suitable patches depending on environmental stochastic conditions during breeding.


Assuntos
Charadriiformes , Animais , Cruzamento , Região do Mediterrâneo , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...